09:22
The Caro-Kann defense, Advance Variation with 3… Bf5 4. c4

<< Introduce    Part 2 >>

We consider variation:

1. e4     c6
2. d4     d5
3. e5     B f5
4. c4       …

In the second part of introduce to the considered variation, we conclusion that the solid continuation is the following:

4.   …       e6
5. N c3    B b4  
6. cd        cd

One of the possible continuations is the following:
7. h4 h6 8. g4 B e4 9. f3 B h7 10. a3 B x c3+ 11. bc N c6 12. R a2 N ge7 13. N h3 Q c7 14. N f4 N a5 15. Q a4 + N ec6 16. B e3 0 – 0 => 

That's what can happen if White begins an attack on the queen side.: 7. Q a4 + N c6 8. B b5 Q d7 9. Ne2 N ge7 10. O-O a6 11. Ng3 B g6 12.B g5 R b8 13.B x c6 (also there might be 13. Q x b4 N x b4 14. B x d7 K x d7 15. B x e7 K x e7 or 13. Q xb4 ab 14. Q c5 b6 15. Q x b5 N x d5 16. Q x d7 K x d7 17. B x e7 K x e7 18. f4 with equal position in the both cases) N x c6 14.N ce2 h6 15.B e3 O-O 16. N f4 B h7 17. Q d1 with the equal chances.  => 

Now there appears an idea for Black to create a passed pawn by moving f6. Thus, Black can seize the initiative: 17. … f6 18. ef R x f6 19. N d3 B d6 20. R c1 B g6 (If Black is in hurry to create a passed pawn this does not work. For example, 20. … e5 21. De N x e5 22. N f4 B f8 23. Q x d5 Q x d5 24. N x f5 R f7 and Black loses the d pawn. It’s not good for Black 21. … B x e5. In this case, there might be: 22. N x e5 N x e5 23. B d4 R e6 24. N h5 B f5 25. h3 R e8 26. f4 N d3 27. N x g7 R g6 28. R c3 B e4 29. g4 N x b2 30. Q b3 N d3 31. R x d3 R x g7 32. R c3 R g6 33. K h2 R c8 34. R x c8 Q x c8 35. R e1 R e6 36. K g3 h5 37. gh K h7 38. R g1 Q b8 39. Q b4 B f5 40. B e5 Q e8 41. K h4 Q e7 + 42. Q x e7 R x e7 and White gets the winning endgame) 21. K h1 R e8 22. f3 Q d8 23. Q d2 R f7 24. N e2 Q f6 25. B f2 Q f5 26. R c3 e5 27. de N x e5 28. N d4 Q h5 29. N x e5 B x e5:  => 

Though there are no any special problems for White to block the d pawn.

Events develop differently in the following game: 7. Q a4 + N c6 8. B b5 B x c3 + 9. bc N e7 10. N e2 O-O 11. N g3 B g6 12. O-O a6 13. B e2 R c8 14.B a3 R e8 15.R fc1 N a5 16.B b4 N e c6 and we have the drawish position. => 

Here is variation with a harmonious development of the pieces without forcing the sharp events: 7. N f3 N e7 8. B g5 N bc6 9. B e2 h6 10. B e3 O-O 11. O-O. => 

Now Black has idea to exchange the bishop to knight (orange arrows) and to press to the White’s c and a pawns (red, green and blue arrows): 11. … B x c3 12. Bc N a5 13. R e1 R c8 14. R c1 N c4.  => 

Now if White plays careless: 15. h3 then 15. … Q a5 16. R a1 N x e3 17. Fe R x c3 and Black wins a pawn.  => 

It’s better for White 15. N d2. If so 15. … N x e3 16 fe Q a5 with slight advantage for Black.  => 

It’s interesting the following variation with a material sacrifice: 13. Q c1 R c8 14. N d2 R c6 15. N b3 N c4 16. N c5 Q c7 17. B f4 R c8 18. R e1 R x c5 19. dc Q x c5 20. a4 N g6 21. B x c4 Q x c4 22. B g3 Q x c3 23. Q x c3 R x c3 and Black gets the enough compensation for the material sacrificed.  => 

It’s mistake for White 10. B h4 because 10. … g5 11. B g3 Q a5 12. Q d2 B e4 13. R c1 B x f3 14. B x f3 N f5 15. 0-0 N cxd4 and Black wins a pawn and gets a better position.  => 

We consider variation:

1. e4     c6
2. d4     d5
3. e5     B f5
4. c4       e6

All of the considered variations are based on the idea to develop the bishop to the b4 square before developing the knight to the e7 square so that the knight should not block the bishop from development. Thus, game continues: 5. N c3 B b4.

However, White may prevent developing the bishop in the fifth move by playing 5. a3. Thus, White deprives Black of all the squares to develop the bishop but the e7 square where the knight is supposed to be developed. In this case of the “5. a3” move, Black finds the way to develop its pieces according the standard development (at least very close to it):

5.   a3       N d7
6.   cd       cd
7.   N c3   N e7
8.   B g5   Q b6
9.   N a4   Q c7
10. B b5   h6
11.
B e3   N c6
12. N e2   N b6
13. 0-0   B e7
14. R c1   0-0
:  => ; 10

Now White prepares the “N c5” threat:

                15. N c5 …

If Black plays careless they may lose the material:  15. N c5 B g6 16. N x b7 Q x b7 17. B x c6 Q a6 18. B x a8 R x a8.  => 

If Black defends against the “N x b7” jab by moving 15. … N d8 then the “N x e6” jab follows: 16. N x e6 Q b8 17. N x f8 K x f8.  => 

If Black defends else: 15. ... R b8 then 16. B x c6 bc 17. N a6.  => 

In all the cases Black loses the material. In order to save from all the jabs Black may play 15. ... R fc8. In this case, the game may continue:

16. N g3   B g6
17. f4      B x c5
18. R x c5 …
 => 

And a new jab threatens to Black. This is the “B x h6” jab. For example, 18. … Q e7 19. f5 ef 20. N x f5 B x f5 21. R x f5 Q d8 22. B x h6 gh 23. Q g4 + K f8 24. Q g6 R c7 25. e6 Q e7 26. R c3 N x d4 27. Q h6 + K g8 28. R g3 + Q g5 29. R x g5 +  => 

If 22. … Q h4 then 23. B f4 and White wins a pawn.  => 

If 20. … Q e6 then there might be 21.  N d6 R c7 22. R c3 B e4 23. B f4 a6 24. B e2 B g6 25. B g4 Q e7 25. N f5 Q d8 26. R h3 N c4 27. B x h6 gh 29. N x h6 + K f8 30. Q c1 N x d4 31. N x f7 R x f7 32. R h8 + K e7 33. Q g5 + R f6 34. Q x f6 # => 

It’s better for Black 21. … Q e6. In this case, there might be: 22. R f1 N e7 23. R x c8 R x c8 24. b3 N d7 25. B e2 f6 26. h4 Q c6 27. b4 Q c2 28. b5 Q x d1 29. B x d1 and we get the open position where the White’s bishops are stronger the Black’s knights. Therefore, White has a slight advantage here.  => 

Therefore, not 18. … Q e7 but 18. … Q d7 preventing 19. f5:

                18. …           Q d7
                19. Q c1      a6
                20. B x c6    R x c6
                21. R x c6   Q x c6                          
                22. Q x c6    bc
 => 

And we come to the equal endgame:

Also, I researched the question how to respond to 12. R c1 and concluded that, in the case of 12. … Q a5 + White may force a draw (if White wants) through a three-fold repetition if Black does not take countermeasures or Blacks gets a worse position. Let us understand why. After 12. … Q a5 + the game may continue:  

13. N c3       a6
14. B d3       B x d3
15. Q x d3   B e7
16. N ge2     N b6
17. 0-0          N c4
18. R b1        Q b6
19. R fe1       0-0

20. B c1        R ac8
21. R d1       …
 => 

and we get the position:

Now one of the possible moves is 21. … Q b3. In this case, White plays 22. Q g3. Thus, the game continues: 22. … K h7 23. B x h6 gh 24. Q d3 + K g8 25. Q g3+ K h7 26. Q d3+ (If 25. … K h8 then 26. Q h3 K h7 27. Q d3 +) K h8 27. Q h3 and these checks may continue infinitely.  => 

That’s why 27. ... Q c2 28. R d3 K h7 29. R c1 Q x b2 30. R b1 Q c2 31. R c1 Q b2 32. R b1 Q c2 33. R c1 Q b2 ½ - ½ and we get the three-fold repetition.  => 

In order to avoid this, Black may play 21. … Q d8 instead of Q b3. If so White respond 22. Q h3 and the game continues: 22. … K h7 23. B x h6 gh 24. Q d3 + K g7 25. Q g3 + K h7 26. Q d3 + K h8 27. Q h3 B h4 28. g3 B g5 29. f4 K g7 30. fg hg 31. R d3 f5 Q f1 R h8.  => 

It seems Black solves its problem, but if White plays better it may cause the three-fold repetition still. To do this, White plays 23. N f4 instead of 23. B x h6 and the game continues: 23. … B g5 24. N ce2 R e8 25. b3 N b6 26. R d3 N d7 27. B d2 N f8 28. R g3 B x f4 29. N x f4 N g6 30. N h5 N x d4 31. N f6 gf 32. Q x h6 + K g8 33. R x g6 fg 34. Q x g6 + K h8 35. Q h6 + K g8 36. Q g6 + K h8 37. ef 38. Q c7 Q h6 + Q h7 39. f7 N e2 + 40. K h1 R f8 41. Q f6 + Q g7 42. Q h4 + Q h7 43. Q f6 + Q g7 44. Q h4 + Q h7 45. Q f6 + and we get the three-fold repetition again.  => 

We see White uses its bishop to reach the three-fold repetition in one case for the “B x h6” jag and in other case to support its queen and rock attack. So, to avoid the three-fold repetition Black should eliminate this bishop. Thus, the proper game is going on:

19. …        N x e3
20. fe        0 – 0
21. N f4    R c8
22. N h5   B g5
23. g3       Q b3
24. R fd1   B d8
25. R dc1    B a5
26. Q c2     Q x c2
27. R x c2   …
 => 

And we get the equal position:

The alternative variation to respond to 12. R c1 is the following variation:

                12. R c1           B e7
                13. N e2         a6
                14. B x c6       bc
                15. N g3         B g6
                16. 0 – 0         N b6
                17. N x b6     Q x b6
                18. f4             Q x b2
                19. f5             ef
                20. R b1         Q c3
                21. R b3         Q c4
                22. N x f5       B x f5
                23. R x f5       c5              

                24. e6         0 – 0
                25. ef           R x f7
                26. R x f7   K x f7
                27. R b7     K f8
                28. h4         …
 => 

And we get the equal position again:

<< Introduce    Part 2 >>

Просмотров: 154 | Добавил: softwarengineer555 | Рейтинг: 0.0/0
Всего комментариев: 0
avatar